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Goal

If Y(") = (Y("(t); t > 0) are centered Gaussian processes with values in
the set of real symmetric matrices of dimension n
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the set of real symmetric matrices of dimension n and (,ug") ; n>1)is the
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measure that assigns mass X to each eigenvalue of Y(")(¢).
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Goal

If Y(") = (Y(")(t); t > 0) are centered Gaussian processes with values in

(n)

the set of real symmetric matrices of dimension n and (p; ' ; n>1)is the
measure that assigns mass X to each eigenvalue of Y(")(¢).

Question

For r € N fixed and a given F : R — R", what can we say about

(frenron-= i) o)
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Introduction

Notation

Denote by R"™" the set of square matrices of dimension n. Let

Y(m = (Y(n)(t); t > 0) be a sequence of R"*"-valued processes, defined
in a probability space (R, F,P).
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Notation

Denote by R"™" the set of square matrices of dimension n. Let

Y(m = (Y(n)(t); t > 0) be a sequence of R"*"-valued processes, defined
in a probability space (2, F,P). Assume that Y(")(t) = [Y,-(f)(t)]lg,-JSn is
real and symmetric, with 7

=X j(t) if i</,
(M ) Va
i (t)_{f Xiit) i Q=] 1)

where X; ;1= (X;j(t); t > 0) are i.i.d. centered Gaussian processes with
covariance

R(S, t) = ]E[lel(s)lel(t)].
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Notation
We will use the notation
0-5 .

R(s,t
= R(Sa S) y Ps,t = M

O0s0t
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Introduction

Notation

We will use the notation

os = /R(s,s) y Ps,t 1=

and assume that o7 = 1,

(H1) There exists o > 1, such that for all T > 0 and t € [0, T], the
mapping s — R(s, t) is absolutely continuous in [0, T] and

T (%

oR ds < o0.

sup g(sa t)

0<t<T JO
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Introduction

Notation

We will use the notation

os = /R(s,s) v Ps,t ‘=

and assume that o7 = 1,

(H1) There exists a > 1, such that for all T > 0 and t € [0, T], the
mapping s — R(s, t) is absolutely continuous in [0, T] and

T [0}

ds < o0.

OR
g(sa t)

sup
0<t<T JO

(H2) The mapping s ~ o2 is continuously differentiable in (0, 00) and
continuous at zero. Moreover, we have that %03 € L1[0, T] for all

T >0.
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Introduction

Notation

Examples:

@ Brownian motion.
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Notation
Examples:

@ Brownian motion

e Fractional Brownian motion with Hurst parameter H € (0, 1).
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Introduction

Notation

Examples:
@ Brownian motion.
e Fractional Brownian motion with Hurst parameter H € (0, 1).

@ Ornestein-Uhlenbeck process.
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Introduction

Notation

We will denote by )\(1")(1“) > > )\g,")(t) the ordered eigenvalues of
Y("(t) and by ,ug") the spectral empirical distribution

n)(dX Z(S (n)(t) (dx).
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Introduction

Wigner theorem

Wigner theorem establishes that for all € > 0 and all function f belonging
to the set Cp(R) of continuous and bounded functions,

Tim. IP’(‘ / £ (d /R FO ()| >

where 5, for o > 0, denotes the rescaled semicircle distribution

1
o(dx) = ~[202017 20.20](X V[_____;de

2102

e) 0, (2

Arturo Jaramillo (CIMAT) Limit theorems for linear statistics of matrix- February 2020 7/24



Introduction

Functional Wigner theorem

In a paper by Jaramillo, Pardo and Pérez (based on previous works by
Rogers, Shi, Cépa, Lepingale and Pérez-Abreu), it was proved that

Theorem
Denote by C(R4,Pr(R)) the set of continuous functions defined in R,
with values m the set of probability measures. If ,u( n)

v, then {(ut (dx), t > 0):n > 1} converges weakly to a function
(ue; t > 0), such that

/ FO)pe(dx) = / f(x)v(dx)
"2 / /]Rz f/(xx . CZ(R(Sas))Ms(dX)us(dy)ds

converges in law to

forall t > 0 and f : R — R three times differentiable, with derivatives of
polynomial growth.

v

= = = — Ty
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Introduction

Fluctuations of Wigner's theorem

In a paper by Lytova y Pastur, it was proved (in a much more general
context than the one described before), that

Theorem
for all f € Cp(R),

/f )(dx) —nEU f(x dx} )| % N(0,02), (3)

where N'(0,02) is a Gaussian random variable with variance

L 1 f(X)—f(y) 2 4_Xy sc sc
of = 4 Jpe ( X—y > (4 —x2)(4 _yz)ﬂl (dx)pi(dy).
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Introduction

Functional fluctuations of Wigner's theorem

There are some results on the functional fluctuations of Wigner's theorem
in the following particular cases:
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Introduction

Functional fluctuations of Wigner's theorem

There are some results on the functional fluctuations of Wigner's theorem
in the following particular cases:

@ The entries X;; are Ornstein-Uhlenbeck processes. This problem was
studied by Israelson, Bender and Unterberger. We know that the limit
is Gaussian and the limiting covariance function can be explicitly
described.
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Introduction

Functional fluctuations of Wigner's theorem

There are some results on the functional fluctuations of Wigner's theorem
in the following particular cases:

@ The entries X;; are Ornstein-Uhlenbeck processes. This problem was
studied by Israelson, Bender and Unterberger. We know that the limit
is Gaussian and the limiting covariance function can be explicitly
described.

@ The entries X;; are complex Brownian motions and f : R — R is a
polynomial. This problem has been studied by Pérez-Abreu and
Tudor. It is known that the limit is Gaussian, but the covariance of
the limit hasn't been described in an explicit way.
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Main results (notation)
Consider the set of test functions
P = {f € C3(R;R) | " has polynomial growth}.
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Introduction

Main results (notation)

Consider the set of test functions
P = {f € C}(R;R) | " has polynomial growth}.
For f € P,F = (f,...,f,) € P" and z € (0,1), define the processes
202 = n [ F00u(a) | [ £ (e

202 = n [ PO (e~ n | [ Fooul(a)]
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Introduction

Main results (notation)

Consider the set of test functions

P = {f € C3(R;R) | f" has polynomial growth}.

For f € P,F = (f,...,f,) € P" and z € (0,1), define the processes
202 = n [ F00u(a) | [ £ (e
202 = n [ PO (e~ n | [ Fooul(a)]

and the kernel
2

1-=z
Kz(xa)/) = 22(X _ y)2 — XyZ(]. - 2)2 + (]- - 22)2.
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Main results

Theorem (Diaz, Jaramillo, Pardo, Pérez)
Forall f,g € P

lim Cov|Z{"(s), Z{"(1)] =2 /R (' (y)
where

Ps,t

vhet (dx, dy),
Ps,t

VU;Ut

//ABszstX/as, v/ o) s (dx)uss (dy)dz
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Introduction

Main results

Theorem (Diaz, Jaramillo, Pardo)
There exists a centered Gaussian process with values in R", denoted by

ANr = ((As(t),...,Ag(t)); t > 0), independent of {X;j;j > i> 1},
defined in an extended probability space (2,G,P), such that

(Z(1) 5 £ > 0) A,

in the topology of uniform convergence over compact sets.
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Introduction

Main results

Theorem (Diaz, Jaramillo, Pardo)

There exists a centered Gaussian process with values in R", denoted by
ANr = ((As(t),...,Ag(t)); t > 0), independent of {X;j;j > i> 1},
defined in an extended probability space (2,G,P), such that

(Z(1) 5 £ > 0) A,

in the topology of uniform convergence over compact sets. The law of Ag
is characterized by

E [Ag()As(8)] = | 0f (v)vens, (dx, dy).

R2

In addition, we have that dr(Z\"(t), As(t)) < NG

v
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Preliminaries of Malliavin Calculus

Basic definitions

Let T > 0 be fixed and define d := M we can identify the process

(Xij(t); 1<i<j<n, t>0)with a R9valued process
V=(V}...,Vg; t>0) with iid. entries
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Preliminaries of Malliavin Calculus

Basic definitions

Let T > 0 be fixed and define d := M we can identify the process

(Xij(t); 1<i<j<n, t>0)with a R9valued process
V=(V}...,Vg; t>0) with iid. entries

We will denote by & the space of step functions over [0, T]. Consider the
inner product

<]l[0,s]7 ﬂ[o’t]>y3 =E [Vsl \/tl] , s, te [0, T],

defined in &.
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Preliminaries of Malliavin Calculus

Basic definitions

Let T > 0 be fixed and define d := M we can identify the process
(Xij(t); 1<i<j<n, t>0)with a R9valued process
V=(V}...,Vg; t>0) with iid. entries

We will denote by & the space of step functions over [0, T]. Consider the
inner product

<]l[0,s]7 ﬂ[o’t]>y3 =E [Vsl \/tl] , s, te [0, T],

defined in &. Let $) obtained as the completion of & with respect to the
inner product above.
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Basic definitions
Example: If X 1 is a Brownian motion, then § = LZ[O, T].
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Basic definitions
Example: If X 1 is a Brownian motion, then § = L2[0, T].

For all 1 <i < n, the mapping 1jg s — V"(Il[o’t]) := V/ can be extended
into a linear isometry, which we will denote by V/(h), for h € $.
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Basic definitions
Example: If X; 1 is a Brownian motion, then 5 = L2[0, T].
For all 1 <i < n, the mapping 1jg s — V’(H[O’t]) := V/ can be extended

into a linear isometry, which we will denote by V/(h), for h € §. If f € $¢
is of the form f = (f1,...,fy), we define

d
V(F) =Y VI(f).

i=1
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Preliminaries on Malliavin calculus

Basic definitions
Example: If X; 1 is a Brownian motion, then 5 = L2[0, T].
For all 1 <i < n, the mapping 1jg s — V’(H[O’t]) := V/ can be extended

into a linear isometry, which we will denote by Vi(h), for h € . If f € $¢
is of the form f = (f1,...,fy), we define

d
V(F) =Y VI(f).

i=1

Example: If X 1 is a Brownian motion, then

d T .
V(f) :Z/O f(t)dV.
i=1
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Preliminaries on Malliavin calculus

Chaos decomposition

For g € N fixed, define the g-th Wiener chaos, as the subspace

Hq = span{Hq(V(h)) | [[ll5e = 1} C L*(Q),

where H, denotes the g-th Hermite polynomial, defined by Hp =1 and
Ha11(x) = xHq(x) — qHg-1(x).
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Preliminaries on Malliavin calculus

Chaos decomposition

For g € N fixed, define the g-th Wiener chaos, as the subspace

Hq = span{Hq(V(h)) | [[ll5e = 1} C L*(Q),

where H, denotes the g-th Hermite polynomial, defined by Hp =1 and
Ha11(x) = xHq(x) — qHg-1(x).

Theorem (Chaos decomposition)
We have that

L*(Q,P) = P Hq
q=0
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Preliminaries on Malliavin calculus

Chaos decomposition

For g € N fixed, define the g-th Wiener chaos, as the subspace

Hq = span{Hq(V(h)) | [[ll5e = 1} C L*(Q),

where H, denotes the g-th Hermite polynomial, defined by Hp =1 and
Ha11(x) = xHq(x) — qHg-1(x).

Theorem (Chaos decomposition)
We have that

L*(Q,P) = P Hq
q=0

The projection of an element Y € L2(Q) over the space H,, will be
denoted by J,[Y].
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Preliminaries on Malliavin calculus

Derivative and divergence operators

For g € N, denote by ($9)®9 and ($9)®9 the g-th tensor product and
g-th symmetrized tensor product of $9.
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Preliminaries on Malliavin calculus

Derivative and divergence operators

For g € N, denote by ($9)®9 and ($9)®9 the g-th tensor product and
g-th symmetrized tensor product of $9.

Definition (Derivative operator)

For a random variable F of the form F = f(V/(hy), ..., V(h,)), where
f € C*(R";R), has derivatives with polynomial growth, define the
Malliavin derivative of F as the $9-valued random vector

DF = Z (V (M), o, V(hn))h.
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Preliminaries on Malliavin calculus

Derivative and divergence operators

For g € N, denote by (79)®9 and (£9)99 the g-th tensor product and
g-th symmetrized tensor product of $9.

Definition (Derivative operator)

For a random variable F of the form F = f(V(hy),..., V(hy)), where
f € C*(R";R), has derivatives with polynomial growth, define the
Malliavin derivative of F as the $9-valued random vector

DF = Z (v (h1), .., V(hn)) .

For p > 1, the operator D can be extended to a subspace D%P C [?(Q),
1
closed with respect to the norm ||F|ip, == (E[|F|P] + E [||DF[|Z])?.
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Preliminaries on Malliavin calculus

Derivative and divergence operators

For g € N, denote by (79)®9 and (£9)99 the g-th tensor product and
g-th symmetrized tensor product of $9.
Definition (Derivative operator)

For a random variable F of the form F = f(V(hy),..., V(hy)), where
f € C*(R";R), has derivatives with polynomial growth, define the
Malliavin derivative of F as the $9-valued random vector

DF = Z (v (h1), .., V(hn)) .

For p > 1, the operator D can be extended to a subspace D%P C [?(Q),

closed with respect to the norm ||F||pis := (E[|F|P] + E [HDFH%])%
Define D" as the r-th iteration of D.
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Preliminaries on Malliavin calculus

Derivative and divergence operators

Definition (Divergence operator)
Denote the adjoint of D by §. Namely,

o § is defined in a domain Dom(d) C L2(Q; $?), characterized by the
property that u € Dom(9) if there exists a constant ¢ > 0, only
depending on u, such that for all F € D2,

B [(DF, u)ga] | < cllFllzg)-
o If u € Dom(¢), then §(u) is characterized by

E[Fo(u)] = E [(DF, u)g4] -
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Preliminaries on Malliavin calculus

Derivative and divergence operators

Definition (Divergence operator)
Denote the adjoint of D by §. Namely,

o § is defined in a domain Dom(d) C L2(Q; $?), characterized by the
property that u € Dom(9) if there exists a constant ¢ > 0, only
depending on u, such that for all F € D2,

B [(DF, u)ga] | < cllFllzg)-
o If u € Dom(¢), then §(u) is characterized by
E[Fé(u)] = E [(DF, u)ﬁd] .

analogously, we define 6" as the adjoint of D".
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The Ornstein-Uhlenbeck semigroup
Definition

PtF =

The Ornstein-Uhlenbeck semigroup {P:}+>0 is defined by
o€ T Jg(F) € L2(Q),
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The Ornstein-Uhlenbeck semigroup

Definition

The Ornstein-Uhlenbeck semigroup {P:}+>0 is defined by
PiF :=>"02 g e 9 Jg(F) € L*(R), and the generator of the
Ornstein-Uhlenbeck L, is defined by

LF == qJg[F].
g=1

Its domain is formed by the random variables F such that

a1 0B [Jg[FI?] < oo
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Relations between D, 6 y L

Mehler's formula stablishes that F € L2(Q) and Wf is a measurable
mapping from R" to R, such that F = Wg(V), then

PoF =B [We(e 'V +V1—e V)|,

where V is an independent copy of V' and E is the expectation with
respect to V.
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Relations between D, 6 y L

Mehler's formula stablishes that F € L2(Q) and Wf is a measurable
mapping from RY to R, such that F = Wg(V), then

PoF =E [Wp(e™ "V + V1—e V)|,

where V is an independent copy of V' and E is the expectation with
respect to V. Additionally, we have that F € Dom(L) if and only if
F € DY2 and DF € Dom(d), in which case

LF = —5(DF).

Furthermore, if F € L2(Q), then

-1
—L7'F = | PyFdf.
Ry
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Preliminaries on Malliavin calculus

Contractions

Let {b;}jen C $H9 be an orthonormal basis of $9. Given f € (§7)®P,
g€ (H9)% and r € {1,...,p A q}, the r-th contraction of f and g is the
element f @, g € ($9)®(PT9-21) given by

[e.9]

f Qrg = Z <f, bi1> ey bir>(ﬁd)®r & <g, b,'l, cey bir>(.6d)®r.

i1yesir=1
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Preliminaries on Malliavin calculus

CLT via Malliavin calculus

Theorem (Nourdin, Peccati and Réveillac)

Suppose that r > 1 is fixed. Consider random vectors
Zn=(Z1ny---sZrn), n>1, withE[Z ,] =0 and Z; , € D?>*. Let C be a
non-negative definite, symmetric matrix of dimensioin r, and let

N = (Ny,...,N,) ~ N, (0, C).

V.
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Preliminaries on Malliavin calculus

CLT via Malliavin calculus

Theorem (Nourdin, Peccati and Réveillac)

Suppose that r > 1 is fixed. Consider random vectors
Zn=(Z1ny---sZrn), n>1, withE[Z ,] =0 and Z; , € D?>*. Let C be a
non-negative definite, symmetric matrix of dimensioin r, and let

N = (Ni,...,N,) ~ N,(0,C). Suppose that:
(i) Foralli,j=1,...,r, E[ZjnZjn] = C(i,j) when n — oo,

V.
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Preliminaries on Malliavin calculus

CLT via Malliavin calculus

Theorem (Nourdin, Peccati and Réveillac)

Suppose that r > 1 is fixed. Consider random vectors
Zn=(Z1ny---sZrn), n>1, withE[Z ,] =0 and Z; , € D?>*. Let C be a
non-negative definite, symmetric matrix of dimensioin r, and let

N = (Ni,...,N,) ~ N,(0,C). Suppose that:

(i) Foralli,j=1,...,r, E[ZjnZjn] = C(i,j) when n — oo,

(i) Foralli=1,...,r, sup,>1 E [|]DZ,-7,7||;‘;J < 00/
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Preliminaries on Malliavin calculus

CLT via Malliavin calculus

Theorem (Nourdin, Peccati and Réveillac)

Suppose that r > 1 is fixed. Consider random vectors
Zn=(Z1ny---sZrn), n>1, withE[Z ,] =0 and Z; , € D?>*. Let C be a
non-negative definite, symmetric matrix of dimensioin r, and let

N = (Ni,...,N,) ~ N,(0,C). Suppose that:

(i) Foralli,j=1,...,r, E[ZjnZjn] = C(i,j) when n — oo,
(i) Foralli=1,...,r, sup,>1 E [|]DZ,-7,7||;‘;J < 00/
)

(iii) Foralli=1,....r, E[||D?Z;, @1 D2Z;p¢qe)er] — O when n — oo.

V.
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Preliminaries on Malliavin calculus

CLT via Malliavin calculus

Theorem (Nourdin, Peccati and Réveillac)

Suppose that r > 1 is fixed. Consider random vectors
Zn=(Z1ny---sZrn), n>1, withE[Z ,] =0 and Z; , € D?>*. Let C be a
non-negative definite, symmetric matrix of dimensioin r, and let

N = (Ni,...,N,) ~ N,(0,C). Suppose that:

(i) Foralli,j=1,...,r, E[ZjnZjn] = C(i,j) when n — oo,
(i) Foralli=1,...,r, sup,>1 E [|]DZ,-7,7||;‘;J < 00/
(i) Foralli=1,...,r, E {HDZZ,-,,, ®1 DZZ,-7,,||?)3C,)®2} — 0 when n — oo.

Then Z, Lﬂﬁv N when n — .

V.
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Preliminaries on Malliavin calculus

CLT via Malliavin calculus

Theorem (Nourdin, Peccati and Réveillac)

Suppose that r > 1 is fixed. Consider random vectors
Zn=(Z1ny---sZrn), n>1, withE[Z ,] =0 and Z; , € D?>*. Let C be a
non-negative definite, symmetric matrix of dimensioin r, and let

N = (Ni,...,N,) ~ N,(0,C). Suppose that:

(i) Foralli,j=1,...,r, E[ZjnZjn] = C(i,j) when n — oo,
(i) Foralli=1,...,r, sup,>1 E [HDZ;,HH;‘%} < 00/
(i) Foralli=1,...,r, E {HDZZ,-’,, ®1 DZZ,-7,,||?I)C,)®2} — 0 when n — oo.

L
Then Z, =¥ N when n — oo. Moreover,

drv(Zin W) < B || D221 91 D2,

2 1
oo

V.
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Proving tightness

The main observation is that the random variable [ f(x)ugn)(dx) satisfies
the following stochastic equation

/f () (gx)

l n 8¢l n
— £(0) + Zz/f YO) gy (Y )Xk n(5)

'72 i=1 k<h

L/ fiix) — n n
"2 /o /R2 ﬂ{xiy}(x)fy(y)#g )(dx) g (dy)vids

S ey ()
‘Q%EAfWW(mmw

where v 1= O'E.
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